Quantcast
Channel: Livestock Blog
Viewing all articles
Browse latest Browse all 362

How gene-mining wheat’s wild ancestors could improve our modern crops

$
0
0

Wheat has been with us for a long time. Exactly how long we may never know, given that soft plant matter, unlike stone, pottery and bone, tends not to be well preserved in the archaeological record. The Ohalo II site in Israel is a bit of anomaly in this regard, owing to its submersion by the Sea of Galilea shortly after the settlement was deserted.

It’s at this Paleolithic site, some 23,000 years old, that the first evidence of collected wild emmer wheat, Triticum turgidum, was unearthed – a discovery that also provides the first indication of a people who may have intentionally disturbed the land in order to facilitate its growth. If validated, it’s a finding that would unwind plant cultivation, if not domestication by 11,000 years.

The majority of our current bread wheat varietals are descendants of those wild emmer grains. Our Neolithic ancestors, who first began to farm wheat, began the process of selecting for desired traits, many of which, such as threshability and size, remain important today.

A good deal of genomic analysis has been conducted on wild emmer wheat. Some has traced genes that had gradually been lost, such as NAM-B1, which is linked to rapid maturation and was found in Nordic wheat varietals as recently as 140 years ago, and is now being re-introduced.


Viewing all articles
Browse latest Browse all 362

Trending Articles